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Preface

This thesis is divided into three parts. In the first section we introduce the
reader to Riemannian submersions and foliations, and state some general
results. The second section deals with the titular topic, namely Riemannian
submersions of Euclidean space. We first show that in this situation there
is one totally geodesic fiber, and then proceed to show how this can be used
to establish that these submersions arise from Lie group actions, if the codi-
mension of the fibers is ≤ 3. The third and fourth section supplement this.
In the third section we prove a small theorem, stating that any embedded
submanifold in Euclidean space with flat normal bundle locally defines a
foliation. The fourth section gives a short overview over generalizations of
the main theorem and possible approaches in higher codimensions.

1 Preliminaries

In this section we introduce the vocabulary we need to talk about Rieman-
nian submersions and prove some basic results which we will need through-
out this thesis. There are several ways to introduce these concepts; we
develop them starting from submersions. Some of these result are based on
[O’N66] of O’Neill and we do not give a proof for these, but refer the reader
to this beautiful work, instead.

1.1 Submersions

Let M and B smooth manifolds. A smooth map π : M → B is called a
submersion, if π∗ has maximal rank.

Definition 1.1 (Riemannian submersions). Given a submersion π : M →
B, kerπ∗ =: V defines a distribution on M , i.e. an smooth subbundle of TM .
We call it the vertical distribution and vectors tangent to fibers vertical.
In case that M is a Riemannian manifold we have a canonical orthogonal
splitting of TM = V ⊕H w.r.t. the metric, where H is called the horizontal
distribution, and vector fields X ∈ ΓH are called horizontal. For each vector
field X∗ on B we have a unique horizontal lift X on M such that X and
X∗ are π-related. Such an X is called basic. A 1-form is called basic, if its
corresponding metric dual vector field is basic.

If both M and B are Riemannian manifolds, π is called a Riemannian
submersion, if π is a submersion and an isometry, when restricted to hori-
zontal vectors.

Let us first fix some notations. We use VM as a shorthand for Γ(TM),
i.e. the space of vector fields ofM . This notation should not lead to confusion
with the vertical bundle V, since for the latter we omit the manifold M .
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Throughout this thesis, for E ∈ VM we will write Eh and Ev for the cor-
responding projections on the horizontal and vertical space. Projections of
the covariant derivative ∇EF will be abbreviated by ∇hEF and ∇vEF respec-
tively. Usually we will write the scalar product notation 〈, 〉 for Riemannian
metrics. The normal bundle of a submanifold N ⊂ M will be denoted by
νN .

For Riemannian submersions, note the following crucial identities.

Lemma 1.2. Let π : M → B be a Riemannian submersion, X,Y be basic
vector fields on M , X∗ := π∗X,Y∗ := π∗Y the π-related vector fields on B.
Then:

(i) 〈X,Y 〉 = 〈X∗, Y∗〉 ◦ π

(ii) [X,Y ]h is the basic vector field corresponding to [X∗, Y∗]

(iii) ∇hXY := (∇XY )h is the basic vector field corresponding to ∇X∗Y∗

Proof. [O’N66, Lemma 1]

Morally Riemannian submersions are the dual of isometric immersion,
since the latter generalize isometries M → B for the case that dimM ≤
dimB, and the former for the case that dimM ≥ dimB. O’Neill established
in [O’N66] that, akin to the way the second fundamental tensor controls
an isometric immersion, there are two tensors which control a Riemannian
submersion.

Definition 1.3 (The A- and S-tensors). The A-tensor and S-tensor of a
Riemannian submersion are given by

AEF = (∇EhF h)v SEF = −(∇F vEh)v,

for E,F ∈ VM . Note that S is just the second fundamental tensor of the
fibers and is self-adjoint. Furthermore, let A∗ denote the pointwise adjoint
of A. In fact, A∗XU is given by −∇hXU ; for this let X,Y be horizontal, U be
vertical. Then

〈A∗XU, Y 〉 = X〈Y, U〉 − 〈Y,∇XU〉 = 〈−∇hXU, Y 〉.

Remark 1.4. This definition differs from the O’Neill-tensors A′ and T orig-
inally given in [O’N66], namely

TEF = (∇EvF v)h + (∇EvF h)v

and
A′EF = (∇EhF h)v + (∇EhF v)h.

However note that restricted to horizontal fields, A′ and A coincide.
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Note that A and S are tensorial in both arguments: Clearly A is tensorial
in the first argument, and S in the second, since the covariant derivative is
tensorial in the first argument. Let ϕ : M → R be a smooth function. Then

AEϕF = ϕ∇vEhF
h + (Eh(ϕ)F h)v = ϕAEF,

and similarly

SϕEF = −ϕ∇vF vEh − (F v(ϕ)Eh)v = ϕSEF.

Since vertical vector fields are tangent to the fibers, which are embedded
submanifolds, their Lie bracket is again vertical. However, this is also true
for the bracket of a vertical field and one, that is π-related to a vector field
downstairs, as the following lemma shows.

Lemma 1.5. If π : M → B is a submersion, then for an X π-related to a
vector field X∗ on B and vertical U , the Lie bracket [X,U ] is vertical.

Proof. This immediately follows from U being π-related to the zero vector
field and X being π-related to X∗. Then the corresponding Lie brackets are
also π-related, hence

π∗[X,U ] = [π∗X,π∗U ] = [X∗, 0] = 0,

and it follows that [X,U ] is vertical.

In particular, this lemma applies in the situation of a Riemannian sub-
mersion to vertical U and basic X and then says that [U,X]h = 0, a fact we
will often use.

Lemma 1.6. The restriction of A to horizontal vectors x, y is simply the
integrability tensor 1

2 [X,Y ]v, where X and Y are any extensions of x and y.

Proof. Note that by the same reasoning used to establish that A and S are
tensorial, also [X,Y ]v is tensorial in both arguments. So we may assume
that X and Y are basic. Then [V,X] and [V, Y ] are vertical, hence

0 = V 〈X,Y 〉 = 〈∇VX,Y 〉+ 〈X,∇V Y 〉
= 〈∇XV + [V,X], Y 〉+ 〈X,∇Y V + [V, Y ]〉
= 〈−A∗XV, Y 〉+ 〈X,−A∗Y V 〉 = 〈AXY, V 〉+ 〈AYX,V 〉.

Hence AXY = −AYX. But we also have AXY −AYX = [X,Y ]v, so

[X,Y ]v = AXY −AYX = 2AXY.
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Remark 1.7. Furthermore T and S are related via

TUV =
∑
i

〈SXiU, V 〉Xi

where the Xi form a local orthonormal base of the horizontal distribution
and U, V are vertical.

As mentioned, these tensors control the submersion. While we do not
use this result, the following theorem is still noteworthy.

Theorem 1.8 (O’Neill, 1966). Let π, π̄ be Riemannian submersions of a
connected Riemannian manifold M onto B. If π and π̄ have the same tensors
A′ and T , and if their derivatives agree at one point in M , then π = π̄.

Proof. [O’N66, Theorem 4]

Lemma 1.9 (Criterion for a submersion being Riemannian). Let π : M →
B be a smooth submersion and M a Riemannian manifold. Then there
exists a metric on B for which π becomes Riemannian iff LUgh vanishes in
any vertical direction U , where gh denotes the restriction of the metric of
M to horizontal fields.

Proof. First assume

(LUgh)(X,Y ) = U〈X,Y 〉 − 〈[U,X]h, Y 〉 − 〈X, [U, Y ]h〉 = 0.

Let X∗, Y∗ ∈ VB and X,Y be their corresponding basic lifts. Then [U, Y ]
and [U,X] are vertical, so it follows that U〈X,Y 〉 = 0. Hence we can define
a metric h on B via h(X∗, Y∗) := 〈X,Y 〉 and then clearly π : (M, g)→ (B, h)
is Riemannian.

Conversely, suppose π is a Riemannian submersion, let U be any vertical
vector field and Ei a local orthonormal basic basis of the horizontal distri-
bution. Then any horizontal vector fields X,Y have the form X = ϕiEi,
Y = ψiEi, where we employ the Einstein summation convention. Then

∇UX = ∇UϕiEi = ϕi∇UEi + U(ϕi)Ei

[U,X] = [U,ϕiEi] = ϕi[U,Ei] + U(ϕi)Ei,

and similar formulas hold for ∇UY and [U, Y ]. It follows that

(LUgh)(X,Y ) = U〈X,Y 〉 − 〈[U,X], Y 〉 − 〈X, [U, Y ]〉
= 〈∇UϕiEi, Y 〉+ 〈X,∇UψiEi〉 − 〈[U,ϕiEi], Y 〉 − 〈X, [U,ψiEi]〉
= ϕi〈∇UEi, Y 〉+ 〈U(ϕi)Ei, Y 〉+ ψi〈X,∇UEi〉+ 〈X,U(ψi)Ei〉
− ϕi〈[U,Ei], Y 〉 − 〈U(ϕi)Ei, Y 〉 − ψi〈X, [U,Ei]〉 − 〈X,U(ψi)Ei〉.
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Clearly the terms containing the derivatives of the ϕi and ψi cancel each
other out. By Lemma 1.5 the Lie bracket of a vertical and a basic vector field
is vertical, so ϕi〈[X,Ei], Y 〉 = 0 and ψi〈X, [U,Ei]〉. Therefore the calculation
simplifies to

(LUgh)(X,Y ) = ϕi〈∇UEi, Y 〉+ ψi〈X,∇UEi〉
= ϕiψj〈∇UEi, Ej〉+ ϕjψi〈Ej ,∇UEi〉.
= ϕiψjU〈Ei, Ej〉 = 0.

Corollary 1.10. A submersion π : M → B is Riemannian if and only if
∇v : H×H → V is skew-symmetric.

Proof. As∇v is tensorial, we may do this calculation using basic vector fields
X,Y . Let U be any vertical field. By the preceding lemma π is Riemannian
iff LUgh vanishes, and since X,Y are basic, [U,X] and [U, Y ] are vertical,
hence π is Riemannian iff 0 = (LUgh)(X,Y ) = U〈X,Y 〉. Now the result
follows from the calculations in the proof of Lemma 1.6.

One fundamental question discussed in [O’N66] is how one can relate the
curvature of M to the one of B. For sectional curvatures, O’Neill established
the following very useful result, which is referred to as O’Neill’s formula.

Theorem 1.11 (O’Neill’s Formula, 1966). Let π : M → B be a Rieman-
nian submersion, K denote the sectional curvature of M , K∗ the sectional
curvature of B. Then, for horizontal vectors x and y on M

K(σx,y) = K∗(σπ∗x,π∗y)− 3
‖Axy‖2

‖x ∧ y‖2
,

where σx,y denotes the plane spanned by x and y.

Proof. [O’N66, Corollary 1]

We conclude this section with a motivating example and the definition
of homogeneity.

Example 1.12 (Glide rotations). Consider the orbit fibration π : R3 →
B2 = R3/R, where R is the Lie group of isometries acting on C × R via
glide-rotations, i.e.

t.(z, r) = (eitz, r + t).

Then π is a Riemannian submersion and the z-axis is the only totally
geodesic fiber. See Figure 1.

More generally we can look at any isometric Lie group action of Rk on
a manifold Mn. Then the projection map π : Mn → Mn/Rk becomes a
Riemannian submersion. This motivates the following definition.
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Figure 1: A fiber of the screwing motion through the point (1, 0, 0). Note
that the z-axis is a totally geodesic fiber.

Definition 1.13 (Homogeneity). Let π : M → B a Riemannian submersion.
If there exists a Lie group action of Rk on Mn such that π equals the
projection map M →M/Rk, π is called homogeneous.

Our goal is to show that for k ≤ 3, the situation for Riemannian sub-
mersions π : Rn+k → Mn is rigid, and that the submersion is given by
generalized glide rotations, meaning that there exists a Lie group homomor-
phism ϕ : Rk → SO(n) such that π is the orbit fibration of the action of Rk
on Rn+k given by

u.(x, v) = (ϕ(u)x, v + u).

1.2 Foliations

Although we are a priori only interested in submersions, at some point
we need to generalize the arguments to foliations. Informally speaking, a
foliation is a way of dividing a manifold into smooth submanifolds that fit
together in a particularly nice way, namely like sheets in a block of paper. In
this situation submersions naturally arise locally and we can talk about Rie-
mannian foliations. We will now formally define a foliation, give a criterion
– involutivity – to recognize these and extend the notion of a Riemannian
submersion to these.

Definition 1.14 (Foliation). Let M be a n-dimensional smooth manifold.
A k-dimensional foliation F of M is a collection of smooth k-dimensional
submanifolds, called leaves, such that for every p ∈ M there exists a chart
(U, x) satisfying the following:

(i) x(U) = V k×V n−k, where V k ⊂ Rk, V n−k ⊂ Rn−k are connected open
sets
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(ii) every leaf L ∈ F intersects U nowhere, or a countable union of k-
dimensional slices, i.e. subsets W such that x(W ) = V k × {c}, with
V k as above and c ∈ Rn−k.

Clearly if one has a foliation on M , the tangent spaces of the leaves
define a distribution. Conversely, given a distribution D, one can ask the
question, whether it generates a foliation, i.e. if there exists a foliation F of
M such that the distribution defined by the leaves coincides with D. More
formally this means, that for any p ∈M we have Dp = TpL, where L is the
leaf through p. In this situation wie call the foliation integrable.

This question is answered by the following standard theorem of smooth
manifold theory. For a proof we refer the reader to standard literature, e.g.
[Lee13].

Theorem 1.15 (Frobenius’ Theorem). Let D ⊂ TM be a distribution of
dimension k. We say the distribution is involutive, if for any sections X,Y of
D, the Lie bracket [X,Y ] is also a section of D. A distribution is integrable
iff it is involutive.

Remark 1.16. A foliation F of M is locally given by submersions.

Proof. Let p ∈ M , (U, x) be a chart around p. With the projection on the
first factor, pr : Rk × Rn−k → Rk, the map π := pr ◦x is clearly a smooth
submersion.

Definition 1.17 (Riemannian foliations). A foliation F of M is said to be
Riemannian or metric if the local submersions defined by F are Riemmanian
submersions. According to Lemma 1.9 and its corollary this is equivalent
to saying that LUgh ≡ 0 for all vertical U or equivalently, that ∇v is skew-
symmetric.

Definition 1.18 (Substantial foliations). F is called substantial along a leaf
L ∈ F if AX maps the horizontal distribution onto the vertical distribution
for some horizontal vector field X. This is equivalent to saying that A∗X is
injective. We say F is weakly substantial if any vertical U is in the image of
AX for some horizontal X.

Definition 1.19 (Flat foliations). The foliation is said to be flat if the A-
tensor vanishes identically. This means that the horizontal distribution is
involutive, and hence by Frobenius’ Theorem integrable.

1.3 Holonomy diffeomorphisms and projectable Jacobi fields

We now want to investigate the relationship of Jacobi fields along horizontal
geodesics in M and their corresponding projections in B. In particular,
we want to give a criterion whether the projection is again a Jacobi field.
O’Neill studied this question already in [O’N67], we, however, will follow
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Gromoll and Walschap in [GW09]. This approach more geometrical, and
relies on the holonomy between fibers along horizontal geodesics.

Definition 1.20 (Holonomy diffeomorphisms). Let π : M → B be a Rie-
mannian submersion, c : [0, 1] → B a geodesic. The holonomy diffeomor-
phism h : π−1(c(0))→ π−1(c(1)) induced by c is given by

h(p) = cp(1),

where cp is a horizontal lift of c emanating from p.

Remark 1.21. On a foliation the holonomy diffeomorphisms are only locally
diffeomorphisms.

Note that the differential of holonomy diffeomorphisms has a quite useful
description in terms of Jacobi fields. Let h be as in the lemma, u be a
vertical vector at p and X be a basic lift of ċ(0) along L := π−1(c(0)). Let
γ : (−ε, ε) → L be a short curve with γ̇(0) = u. Then we can consider the
geodesic variation

csp(t) := expγ(s) tX,

and observe that h ◦ γ(s) = csp(1). In particular, h∗pu = ∂
∂s

∣∣
s=0

csp(1). But
csp(t) is a geodesic variation, so we have

h∗pu = J(1),

where J is the Jacobi field along cp(t) with initial conditions J(0) = u and

J ′(0) =
∇
∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

csp(t) =
∇
∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0

csp(t)

=
∇
∂s

∣∣∣∣
s=0

X(γ(s)) = ∇uX.

Finally observe that

J ′(0) = ∇uX = ∇vuX +∇huX = −Sċp(0)u−A∗ċp(0)u.

This motivates the following.

Definition 1.22 (Holonomy fields). A Jacobi field J along a horizontal
geodesic c : [0, a]→M , which is vertical at 0 and satisfies

J ′(0) = −A∗ċ(0)J(0)− Sċ(0)J(0)

is called a holonomy field. Note that the restriction to [a′, a] is also a holon-
omy field, since it describes the differential of the holonomy diffeomorphism
between the fibers through c(a′) and c(a). Therefore, the equation holds
for all t ∈ [0, a]. Also, because the holonomy displacement is a local diffeo-
morphism, a holonomy field that vanishes at one point is zero everywhere.
Furthermore, such a field is alway vertical.
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Definition 1.23 (Projectable fields). Let c : [0, a] → M be a horizontal
geodesic. A Jacobi field J along c is said to be projectable if it satisfies

J ′v = −SċJv −AċJh.

Observe that the collection of projectable Jacobi fields along c is a vector
space, containing the collection of holonomy fields as a subspace, since these
are vertical and the vertical part of their derivative is exactly −SċJ .

Proposition 1.24 (Variational fields of horizontal geodesics). The varia-
tional field of a variation of a geodesic c : [0, a] → M through horizontal
geodesics is projectable.

Proof. Let cs(t) : [0, a]× (−ε, ε)→M be a variation of c through horizontal
geodesics with c0 = c. Fix some t0 ∈ [0, a], let γ(s) = cs(t0) and denote by
γ̇(s) its derivative w.r.t. s. Then the variational field of cs at t0 is the Jacobi
field J(t0) = ∂

∂s

∣∣
s=0

cs(t0) = γ̇(0) and we have

J ′(t0) =
∇
∂t

∣∣∣∣
t=t0

∂

∂s

∣∣∣∣
s=0

cs(t) =
∇
∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=t0

cs(t)

=
∇
∂s

∣∣∣∣
s=0

ċs(t) = ∇γ̇ ċ(t0)

The variation is through horizontal geodesics, so ċs(t) is horizontal. In
particular

J ′(t0)v = ∇vγ̇ ċ(t0)h = ∇vγ̇h ċ(t0)h +∇vγ̇v ċ(t0)v = ∇vJh ċ(t0) +∇vJv ċ(t0)

= AJh ċ(t0)− Sċ(t0)J
v = −Sċ(t0)J

v −Aċ(t0)J
h.

Lemma 1.25 (Projectable lifts). Let c : [0, a] → M a horizontal geodesic
and J a Jacobi field along π ◦ c. Then, for any vertical u ∈ Tc(0)M , there

exists a unique projectable Jacobi field J̃ along c such that

(i) π∗J̃ = J , and

(ii) J̃(0)v = u.

Proof. Let γ : (−ε, ε)→ B be a curve such that γ(0) = π ◦ c(0), γ̇(0) = J(0)
and V,W parallel along γ such that V (0) = (π ◦ c)′(0), W (0) = J ′(0).
Consider the geodesic variation cs : [0, a] × I → B, cs(t) = expγ(s) t(V +

sW )(s) of π ◦ c. Note that ∂
∂

∣∣
s=0

cs(0) = J(0), and

∇
∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

cs(t) =
∇
∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0

cs(t) =
∇
∂s

∣∣∣∣
s=0

(V + sW )(s) = J ′(0).
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Let γ̃ be a lift of γ such that ˙̃γ(0)v = u and π∗γ̃ = γ. Consider the basic
lift Xs of (V + sW )(s) along γ̃, and let c̃s(t) = expγ̃(s) t(Xs ◦ γ̃)(s). This is a

variation by horizontal geodesics, hence its variational field J̃ is projectable.
Also J̃(0)v = u by construction. Furthermore π ◦ c̃s(t) = cs(t), hence

π∗J̃ = π∗
∂

∂s

∣∣∣∣
s=0

c̃s =
∂

∂s

∣∣∣∣
s=0

cs = J.

Because J̃ is projectable and J̃h′v = ∇vċ J̃h = AċJ̃
h,

J̃v ′v = J̃ ′v − J̃h′v = −SċJ̃v − 2AċJ̃
h.

It follows that

J̃v ′ = J̃v ′v + J̃v ′h = −SċJ̃v − 2AċJ̃
h −A∗ċ J̃v.

This together with (ii) determines J̃v uniquely and by (i) J̃h is determined,
so J̃ ′(0) is determined. Also, J̃(0) = u, so the uniqueness of J̃ follows, as
Jacobi fields are determined by their initial conditions.

Now we are in a position to give criterion, as to when a Jacobi field
along a horizontal geodesic in M projects down to a Jacobi field along the
corresponding geodesic in B.

Theorem 1.26 (Projectable fields project to Jacobi fields). Let c : [0, a]→
M be a horizontal geodesic and be J a projectable Jacobi field along c. Then
π∗J is a Jacobi field along π ◦ c.

Proof. Let P be the space of projectable Jacobi fields along c and I the
space of Jacobi fields along π ◦ c. Consider the map

Vc(0) × I → P
(u, J) 7→ J̃

which maps a vertical vector u and a Jacobi field J along π ◦ c to the unique
projectable Jacobi field J̃ with π∗J̃ = J and J̃v(0) = u. It is well defined
by Lemma 1.25. Clearly this map is linear and has by construction a trivial
kernel. So dimP ≥ k + dim I, where k is the dimension of the fiber. Since
I is the space of Jacobi fields along π ◦ c, its dimension is dim I = 2 dimB.
Hence dimP = k + 2 dimB = dimM + dimB, where k is the dimension of
the fiber.

Conversely, consider the map

P → Tc(0)M ×Hc(0)

J 7→ (J(0), J ′h(0)).

11



Again, this map is linear. If J is in the kernel of the map, then J ′h(0) = 0.
Because J is projectable, we have J ′v(0) = −S ˙c(0)

Jv(0) − A∗ċ(0)J
h(0). But

the latter is zero, because J(0) = 0 and hence J(0) = J ′(0) = 0 and the
kernel is trivial. In particular, dimP ≤ dimM + dimB and the first map
given is an isomorphism, hence the theorem follows.

The theory of holonomy fields already allows us to establish the following
general result.

Lemma 1.27 (A Riccati type equation). Along any horizontal geodesic c,
we have the following Riccati type equation:

S′vċ = S2
ċ −AċA∗ċ +Rvċ ,

where Rvċ = Rv(·, ċ)ċ.

Proof. Note that for any t0 there exists an orthonormal basis of holonomy
fields that span the vertical space at c(t0). So let T be any vertical field
along c and J be a holonomy field. Using the symmetries of the Riemannian
curvature tensor and the identity for Jacobi fields we have 〈R(T, ċ)ċ, J〉 =
−〈J ′′, T 〉. Since J is a holonomy field we have

−〈T, J ′′〉 = 〈T, (A∗ċJ)′v〉+ 〈T, (SċJ)′v〉
= 〈T,AċA∗ċJ〉+ 〈T, SċJ〉′ − 〈T ′v, SċJ〉
= 〈AċA∗ċT, J〉+ 〈SċT, J〉′ − 〈SċT ′v, J〉
= 〈AċA∗ċT, J〉+ 〈(SċT )′, J〉+ 〈SċT, SċJ〉 − 〈SċT ′v, J〉
= 〈AċA∗ċT, J〉+ 〈(SċT )′, J〉+ 〈S2

ċT, J〉 − 〈SċT ′v, J〉.
= 〈AċA∗ċT, J〉+ 〈S2

ċT, J〉+ 〈(S′ċT )v, J〉

Now it is a simple matter of rearranging the terms to obtain the desired
Riccati type equation. Since for any t0 we can find holonomy fields that form
an orthonormal base of the vertical space at ċ(t0), the Lemma follows.

1.4 The mean curvature form

Definition 1.28 (Mean curvature form). The mean curvature form κ of
a Riemannian submersion π : M → B is given by κ(E) = trSEh , with
E ∈ VM .

Lemma 1.29. Let Ti be a local orthonormal frame of the vertical distribu-
tion. Then we have the following description of the mean curvature form:

κ(E) = trSEh =
∑
i

〈−∇vTiE
h, Ti〉 =

∑
i

〈∇TiTi, Eh〉 =
∑
i

〈Ti, [Eh, Ti]〉

12



Proof. The first equality is just the definition. For the second equality,
observe that 〈−∇TiEh, Ti〉 = −Ti〈Eh, Ti〉 + 〈∇TiTi, Eh〉. But since Eh and
Ti are orthogonal to each other, the first term vanishes.

Similarly, we have for any X, 0 = X〈Ti, Ti〉 = 2〈Ti,∇XTi〉, hence
〈−∇vTiE

h, Ti〉 = 〈−∇EhTi − [Ti, E
h], Ti〉 = 〈[Eh, Ti], Ti〉.

Lemma 1.30. For basic X,Y the exterior derivative dκ(X,Y ) is given by
−2 divAXY .

Proof. Recall that dκ(X,Y ) = X(κY )− Y (κX)− κ[X,Y ], so the claim will
follow once we establish that

κ([X,Y ]) = κ([X,Y ]h) = X(κY )− Y (κX) + 2 divAXY.

First want to see the origin of the divergence term:

κ[X,Y ] = κ([X,Y ]h) =
∑
i

〈[[X,Y ]h, Ti], Ti〉

=
∑
i

{〈[[X,Y ], Ti]− [[X,Y ]v, Ti], Ti〉}

=
∑
i

{〈[[X,Y ], Ti], Ti〉+ 〈Ti,∇Ti [X,Y ]v〉}

The last equality follows from the fact that the Ti form an orthonormal
base, so 0 = X〈Ti, Ti〉 = 2〈Ti,∇XTi〉. Note that for X basic, T vertical
〈∇XT,X〉 = 〈∇TX,X〉 + 〈[X,T ], X〉. As observed in the proof of the pre-
ceding lemma, the first term vanishes, and the second term is zero, since
[X,T ] is vertical for basic X. It follows immediately that the divergence of
a vertical field is just its divergence in the leaf, so

κ[X,Y ] = div([X,Y ]v) +
∑
i

〈[[X,Y ], Ti], Ti〉

= 2 divAXY +
∑
i

〈[[X,Y ], Ti], Ti〉.

It remains to show that
∑

i〈[[X,Y ], Ti], Ti〉 = X(κY )− Y (κX). To this end
let Xij = 〈[X,Ti], Tj〉, Yij = 〈[Y, Ti], Tj〉, so we have [X,Ti] =

∑
j XijTj and

[Y, Ti] =
∑

j YijTj .
Using the Jacobi identity, this convention and the skew-symmetry of the
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bracket, we obtain∑
i

〈[[X,Y ], Ti], Ti〉 =
∑
i

{〈[[X,Ti], Y ], Ti〉 − 〈[[Y, Ti], X], Ti〉}

=
∑
i

〈∑
j

XijTj , Y

 , Ti〉

−
∑
i

〈∑
j

YijTj , X

 , Ti〉

=
∑
i,j

{〈[XijTj , Y ], Ti〉 − 〈[YijTj , X], Ti〉} .

Since the Xij and Yij are smooth functions, the Leibniz rule for the Lie
bracket applies:∑

i

〈[[X,Y ], Ti], Ti〉 =
∑
i,j

{Xij〈[Tj , Y ], Ti〉 − Y (Xij〈Tj , Ti〉

− Yij〈[Tj , X], Ti〉+X(Yij)〈Tj , Ti〉}

=
∑
i,j

XijYji − YijXji +
∑
i

X(Yii)− Y (Xii)

We sum up over all pairs (i, j), so the first sum is zero. Therefore,∑
i

〈[[X,Y ], Ti], Ti〉 =
∑
i

{X(Yii)− Y (Xii)}

=
∑
i

{X〈[Y, Ti], Ti〉 − Y 〈[X,Ti], Ti〉}

= Xκ(Y )− Y κ(X),

and the Lemma follows from the observation made in the beginning.

Definition 1.31 (Isoparametricity). A metric foliation is said to be isopara-
metric, if the principal curvatures in basic directions are locally constant
along leaves.

Theorem 1.32 (Foliations of Rn are isoparametric). All metric foliations
of Rn are isoparametric. In particular, their mean curvature form is basic.

Proof. Let p ∈ Rn, x ∈ TpRn be horizontal and U be an open neighbourhood
of p such that π : U → B is a Riemannian submersion defining the foliation
locally.

We prove a slightly stronger statement: If λ is an eigenvalue of Sx,
then λ is also an eigenvalue of the same multiplicity of Sx̃, where x̃ is any

14



horizontal vector with π∗x = π∗x̃. Let γ and γ̃ be horizontal geodesics with
initial vectors x and x̃ respectively. Let u be a unit λ-eigenvector of Sx,
i.e. Sxu = λu. Consider the Jacobi field J along γ with initial conditions
J(0) = u, J ′(0) = −Sγ̇(0)u = −λu. Because u is vertical, this is a projectable
Jacobi field, hence π∗J is Jacobi along π ◦ γ. Furthermore, because of the
form of Jacobi fields in Rn, J(t) = (1 − λt)E(t), where E(t) is a parallel
extension of u along γ.

Assume for now that λ 6= 0. Then J(l) = 0 for l = 1
λ . In particular

π∗J(0) = π∗J(l) = 0. By Lemma 1.25 there exists a unique projectable
Jacobi field J̃ along γ̃ such that π∗J̃ = π∗J . Now π∗J(0) = 0, so J̃(0)
must also be vertical. Hence J̃ ′v(0) = −Sx̃J̃(0). This implies that J̃(t) =
(1− λt)Ẽ(t), where Ẽ is a parallel extension of J̃(0) along γ̃. In particular
J̃ ′(0) = −λẼ(0), so Ẽ(0) is a λ-eigenvalue of Sx̃. But by [O’N67, Theorem 4]
the order of γ(l) and γ̃(l) as focal points of γ(0), γ̄(0) along γ and γ̃ coincide
(being equal to the order of conjugacy downstairs), so the λ-eigenspaces of Sx̃
and Sx have the same dimension. So for non zero eigenvalues, the statement
is true. But then it must also be true for λ = 0.

Definition 1.33 (Minimal foliations). A foliation is called by minimal leaves
or simply minimal if κ ≡ 0.

Lemma 1.34 (Minimal foliations of Rn). Any codimension k Riemannian
foliation of Rn by minimal leaves is totally geodesic and flat.

Proof. Consider the Riccati type equation of Lemma 1.27. In Euclidean
space the equation reduces to S′vċ = S2

ċ −AċA∗ċ . Taking traces we obtain

(trSċ)
′ = ‖Sċ‖2 − ‖Aċ‖2.

To see this, let Ti be a parallel orthonormal frame of the vertical distribution
along c. Then

trS′vċ =
∑
i

〈(SċTi)′ − (Sċ(T
′v
i ), Ti〉,

hence the last term vanishes, because the Ti are chosen parallel along c.
Similarily,

(trSċ)
′ =

∑
i

〈SċTi, Ti〉′ =
∑
i

〈(SċTi)′, Ti〉.

The right hand side follows immediately from the fact that Sċ is self-adjoint
and the general fact that for adjoint operators A and A∗ one has ‖A∗‖2 =
‖A‖2:

tr(S2
ċ −AċA∗ċ) =

∑
i

〈SċTi, SċTi〉 −
∑
i

〈A∗ċTi, A∗ċTi〉 = ‖Sċ‖2 − ‖Aċ‖2

It follows that (trSċ)
′ = ‖Sċ‖2−‖Aċ‖2, and by assumption (trSċ)

′ = κ(ċ)′ =
0. Hence ‖Sċ‖2 = ‖A∗ċ‖2.
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Observe that ker(Sċ +A∗ċ) is a parallel subspace along c: If u belongs to
the kernel at, say t = 0, then the holonomy field J with J(0) = u is parallel,
because J ′(0) = 0.

Towards a contradiction, assume that im(Sċ + A∗ċ) 6= {0}. Let fi be
an orthonormal basis of im(Sċ(0) + A∗ċ(0)) and ei vectors such that (Sċ(0) +

A∗ċ(0))ei = −fi. Let Ei and Fi be their parallel extensions along c. Then the

holonomy fields Ji with Ji(0) = ei are given by Ji(t) = Ei(t) + tFi(t).
Let J be such a holonomy field, and let U = J

‖J‖ . Then SċU = 1
‖J‖SċJ =

J ′v

‖J‖ . U is a unit vertical vector field. Let Vi be unit vector fields such that
U, V1, . . . , Vk−1 form an orthonormal base of the vertical distribution. Then

J ′v = 〈J ′, U〉U +
k−1∑
i=1

〈J ′, Vi〉Vi,

and, because the summands are orthogonal to each other,

‖J ′v‖2 = ‖〈J ′, U〉U‖2 +

k−1∑
i=1

‖〈J ′, Vi〉Vi‖2 =

(
〈J ′, J〉
‖J‖2

)2

+

k∑
i=1

‖〈J ′, Vi〉Vi‖2.

It follows that

‖SċU‖2 =
1

‖J‖2
‖SċJ‖2 ≥

(
〈J ′, J〉
‖J‖2

)2

=

(
〈E,F 〉+ t‖F‖2

)2
(‖E‖2 + 2t〈E,F 〉+ t2‖F‖2)2 ,

hence t2‖SċU‖2 → a for some a ≥ 1 as t tends to infinity. Similarly,

t2
‖J ′‖2

‖J‖2
= t2

‖F‖2

‖E‖2 + 2t〈E,F 〉+ t2‖F‖2
→ 1.

Since J is a holonomy field, we have

‖A∗ċU‖2 + ‖SċU‖2 =
1

‖J‖2
(
‖A∗ċJ‖2 + ‖SċJ‖2

)
=
‖J ′‖2

‖J‖2
.

Consequently we have t2‖AċU‖2 → 0 for t→∞. In particular we have

‖Aċ‖2
‖Sċ‖2

→ 0,

but this is a contradiction to ‖Aċ‖2 ≡ ‖Sċ‖2. Hence (Sċj + A∗ċ) must have
trivial image and any vertical vector u must belong to the kernel. Since
Sċu ⊥ A∗ċu the claim follows.

Remark 1.35 (A more concise proof). In the case of a fibration, the proof
of Lemma 1.34 becomes a lot simpler. As we will see, in this case there is
a totally geodesic fiber F , so along F one has Sċ ≡ 0. Then the Riccati
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type equation yields that along F we also have Aċ ≡ 0. But if the A-tensor
vanishes at some point p in some connected space of constant curvature K,
it vanishes everywhere: By connectedness it suffices to show that A ≡ 0
in a neighbourhood of p. By O’Neill’s formula (Theorem 1.11), ‖AXY ‖ is
constant along a leaf L, so we have to show that AXY is zero along any
horizontal geodesic γ emanating from p. Indeed, any parallel vector field
along γ with E(0) horizontal stays horizontal. So the claim follows once
we have established this, since AXYp is horizontal. If J is a holonomy field
along γ and E parallel, we have

〈J,E〉′′ = 〈J,E′〉′ + 〈J ′, E〉′ = 〈J ′′, E〉 = −〈R(J, γ̇)γ̇, E〉 = −K〈J,E〉.

Since J is a holonomy field

〈J,E〉′ = 〈J ′, E〉 = −〈(Sγ̇ +A∗γ̇)J,E〉 = −〈A∗γ̇J,E〉.

Now 〈J,E〉p = 0 by assumption and 〈A∗γ̇J,E〉p = 〈J,Aγ̇E〉p = 0, hence the
claim follows.

Also note that by [FGLT00, Theorem 1.7], any foliation of Euclidean
space is given by a submersion, so we actually always are in the above
situation.

1.5 The Bott connection

We now introduce the Bott connection, a notion that plays a major role in
understanding the foliation.

Definition 1.36 (The Bott connection). Let F be a foliation of a Rieman-
nian manifold Mn, and L a leaf. The Bott connection is given by

∇B : TL× ΓνL→ΓνL

(u,X) 7→[U,X]h,

where U is any vertical extension of u; this definition makes sense, as [U,X]h

is tensorial in the first argument, since for any smooth ϕ one has

[ϕU,X]h = ϕ[U,X]h −X(ϕ)Uh = ϕ[U,X]h.

It follows immediately from the properties of the Lie bracket that this is
indeed a connection.

We now proceed to show two important lemmata which relate the Bott
connection to the foliation. The first one tells us that the foliation is metric
iff the Bott connection is. The second one characterizes the basic vector
fields as those which are Bott parallel.

Lemma 1.37 (A characterization of metric foliations). Let F be a foliation
of a Riemannian manifold Mn. The foliation is metric if and only if the
Bott connection is metric.
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Proof. This is an immediate result of Lemma 1.9: We have

Ug(X,Y ) = LUgh(X,Y ) + g([U,X]h, Y ) + g(X, [U, Y ]h).

But F is metric iff LUgh(X,Y ) vanishes.

Remark 1.38 (Flatness of the Bott connection). The Bott connection is
flat.

Proof. Let U, V be vertical, X be horizontal. Then the curvature of ∇B is
given by

RB(U, V )X = [U, [V,X]h]h − [V, [U,X]h]h − [[U, V ], X]h

= [U, [V,X]h]h + [X, [U, V ]]h + [V, [X,U ]h]h.

But in a foliation the vertical distribution is integrable, i.e. [U, V ] is vertical.
In particular, we have for any vector field E

[U,Eh]h = [U,E − Ev]h = [U,E]h − [U,Ev]h = [U,E]h,

and the claim follows from the Jacobi identity for the Lie bracket.

Another way to see that the Bott connection is flat would have been to
note that it admits parallel sections, namely the basic vector fields.

Lemma 1.39 (Basic vector fields are Bott parallel). In case of a metric
foliation, the basic vector fields on M are exactly the Bott parallel ones.

Proof. We have already seen that for vertical U and basic X, [U,X] is
vertical, so basic vector fields are parallel w.r.t. the Bott connection. On
the other hand, let U be a vertical and X be a horizontal field such that
[U,X]h = 0. Let X1, . . . , Xn be a base of basic vector fields as above, write
X =

∑n
i=1 ϕiXi. Then

0 = [U,X]h = [U,

n∑
i=1

ϕiXi]
h =

(
n∑
i=1

[U,ϕiXi]

)h

=

 n∑
i=1

U(ϕi)Xi + ϕi [U,Xi]︸ ︷︷ ︸
vertical

h

=

n∑
i=1

U(ϕi)Xi.

Therefore U(ϕi) = 0 for all i, and hence X is basic.

To conclude, we introduce the connection difference form; it will play a
crucial role in establishing the main theorem. As it turns out, it will describe
the differential of the Lie group homomorphism.
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Definition 1.40 (The connection difference form). The connection differ-
ence form ω is the 1-form given by

ω(U)X = (∇UX)h −∇BUX.

Observe that ω(U)X = −A∗XU , and in particular, that ω takes values
in the skew-symmetric endomorphism bundle. To see this, let Y be any
horizontal vector field. Then, as [U,X] is vertical,

〈ω(U)X,Y 〉 = 〈(∇UX − [U,X])h, Y 〉 = 〈(∇XU)h, Y 〉
= X〈U, Y 〉 − 〈U,∇XY 〉 = −〈U,∇XY 〉
= 〈U,−(∇XY )v〉 = 〈−A∗XU, Y 〉.
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2 Riemannian submersions of Euclidean space

We now restrict our attention to Riemannian submersions π : Rn+k →Mn,
and unless otherwise stated, π will denote such a submersion. Clearly π
defines a fibration. From O’Neill’s formula (Theorem 1.11), we know that
Mn must have nonnegative curvature. Using a little topology, we can obtain
some further properties:

Let F = π−1(b) the fiber over some point b ∈M . Then the long sequence
of homotopy groups

. . . // πn(F )
i∗ // πn(Rn+k)

π∗ // πn(M)
∂ // πn−1(F ) // . . .

is exact, where i : F → Rn+k denotes the inclusion of F in the total space
and ∂ is the boundary operator. This yields the following.

Observation 2.1 (Connectedness of the fibers). The fibers F are connected
if and only if M is simply connected.

Proof. For the arrow between π1(M) and π0(F ) we have

π1(Rn+k)
π∗ // π1(M)

∂ // π0(F )
i∗ // π0(Rn+k)

π∗ // π0(M) .

But π1(Rn+k) ∼= 0 and π0(Rn+k) ∼= Z, so ∂ is injective. Since π is smooth
and Rn+k is connected, M is too, and π0(M) ∼= Z.

Now assume F is connected, i.e. π0(F ) ∼= Z. Then clearly i∗ is injective.
Exactness of the sequence yields im ∂ = ker i∗ ∼= 0. But ∂ is injective, so we
have shown that π1(M) must be 0 and M is simply connected.

If we assume that M is simply connected, it follows that im ∂ ∼= 0 and
hence ker i∗ ∼= 0. In particular π0(F ) ∼= Z, since F is non-empty and F is
connected.

It follows from the homology spectral sequence, that M is actually dif-
feomorphic to Euclidean space (cf. [GP97, Theorem 3.1]).

Now we can and will restrict our attention to the case where the fibers
are connected and M is simply connected, since π factors as a fibration over
the universal cover M̃ of M and a covering map. But such covering maps
are well understood and M̃ is isometric to M0 ×Rm for some m, where M0

is a compact manifold of nonnegative curvature (cf. [CG72]).

2.1 Lifting of the soul construction

Our next goal is to establish that for any submersion π : Rn+k →Mn there
is a totally geodesic fiber F k. While this result is interesting in its own
right, an immediate consequence is that the mean curvature form is exact.
Furthermore, it plays a key role in establishing homogeneity of the foliation
in the next section.
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Recall the much celebrated Soul Theorem of Jeff Cheeger and Detleff
Gromoll ([CG72]):

Theorem 2.2 (Soul Theorem, Cheeger-Gromoll, 1972). Let (M, 〈, 〉) be an
open manifold with K ≥ 0. Then there exists a compact, totally geodesic,
totally convex submanifold Σ ⊂ M without boundary, the soul of M , such
that M is diffeomorphic to the normal bundle ν(Σ).

As observed, M has nonnegative curvature and is diffeomorphic to Eu-
clidean space. So M has a soul and this soul must be a point. We proceed
to show that the fiber over the soul is totally geodesic and hence an affine
subspace of Rn+k.

Recall the process of constructing the soul. For a ray γ in M we define
Bγ =

⋃
t>0Bt(γ(t)), where Br(p) is the ball of radius r around p. Then

its complement Cγ is a totally convex subset (t.c.s.) of M . Fixing a point
p ∈ M , we can take the intersection of all Cγ , where γ is a ray emanating
from p. This yields a compact t.c.s. C. In fact such an C is a submanifold
with totally geodesic interior and possibly a nonsmooth boundary ∂C. If
∂C = ∅, C is the soul of M . Otherwise let C1 be the subset of points
at maximal distance from ∂C. Again this yields a t.c.s., of strictly lower
dimension, with possibly nonsmooth and nonempty boundary ∂C1. Now
iterate this process until at a t.c.s. Ck with ∂Ck = ∅. This is the soul of M ,
and consists in our case of single point.

Now we can lift this process to Rn+k. If γ̄ is a horizontal lift of γ to
Rn+k, we obtain a set Bγ̄ =

⋃
t>0Bt(γ̄(t)). Because π is a submetry, i.e.

maps closed balls of radius r to closed balls of radius r, it is clear that
π(Bγ̄) = Bγ . Let B̄γ be the union of all Bγ̄ , where γ̄ ranges over the
horizontal lifts of γ, and let C̄γ = Rn+k \ B̄γ . Now we show that C̄γ projects
down to Cγ .

Lemma 2.3. C̄γ is a closed convex set and π(C̄γ) = Cγ .

Proof. Note that the Bγ̄ are open half-spaces, hence C̄γ is the intersection
of closed half-spaces and as such a closed convex set.

First we show that Cγ ⊂ π(C̄γ): Let x ∈ Cγ , i.e. x 6∈ Bγ . Then for x̄ ∈
π−1(x) we also have for all lifts γ̄ of γ x̄ 6∈ Bγ̄ , because else π(x̄) = x ∈ Bγ .
So x̄ ∈ C̄γ .

For the converse, i.e. π(C̄γ) ⊂ Cγ we assume towards a contradiction that
this does not hold. Then there exists an x̄ ∈ C̄γ for which x := π(x̄) ∈ Bγ .
This means that there exists t0 > 0 such that d(γ(t0), x) < t0. Let c be
a minimal geodesic connecting γ(t0) with x. Then c̄(0) = γ̄(t0) for some
horizontal lift c̄ of c. But this means that d( ¯γ(t0), x̄) = d(γ(t0), x) < t0, a
contradiction to x̄ ∈ C̄γ .

Theorem 2.4 (The fiber over a soul). If π : Rn+k → Mn is a Riemannian
submersion, then the fiber π−1(p) over a soul p of M is an affine subspace.
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Proof. Let C̄ =
⋂
γ C̄γ , where γ ranges over all rays in Mn emanating from

p. Clearly C̄ is a closed and convex subset of Euclidean space. Indeed,
C̄ = π−1(C), where C is the t.c.s. from the soul construction as described
above: If x̄ ∈ C̄, then for all rays γ emanating from p x̄ ∈ C̄γ , so for all
γ, π(x̄) ∈ Cγ , hence π(x̄) ∈ C. Conversely, if x̄ 6∈ C̄, then there exists a
ray γ emanating from p such that x̄ 6∈ C̄γ , i.e. for this γ we have x̄ ∈ B̄γ .
Hence there exists a lift γ̄ of γ such that x̄ ∈ Bγ̄ . But then π(x̄) ∈ Bγ , thus
π(x̄) 6∈ Cγ and in particular π(x̄) 6∈ C. Thus C̄ = π−1(C) and consequently
∂C̄ = π−1(∂C).

If the boundary of C is empty, i.e. C is the soul {p} of Mn, then C̄ is
totally geodesic and hence an affine subspace of Rn+k.

Otherwise consider for 0 ≤ a ≤ a0 = max {d(q, ∂C) | q ∈ C} the sets
Ca = {q ∈ C | d(q, ∂C) ≥ a} and C̄a =

{
q ∈ C̄ | d(q, ∂C̄) ≥ a

}
. Both are

superlevel sets of the (in the sense of support functions) concave distance
function, so Ca is a closed t.c.s. in M and C̄a is a closed convex set in Rn+k.

Also C̄a = π−1(Ca), because x̄ ∈ C̄a iff d(x̄, b̄) ≥ a for all b̄ ∈ ∂C̄a. But
d(x̄, b̄) = d(x, b), where x = π(x̄), b = π(b̄), so d(x, b) ≥ a.

In particular, C(1) = Ca0 is the lower-dimensional t.c.s. in the soul
construction and C̄(1) = C̄a0 , so C̄ = π−1(C(1)). Iterating this procedure
yields a set C(l) after finitely many steps, the soul {p}, and by the above
arguments C̄(l) is a closed convex subset without boundary of Rn+k, i.e. an
affine subspace.

Observe that the soul {p} of M is essentially unique. If there is another
soul, say, {q}, then the totally geodesic fibers Fp and Fq over the souls are
equidistant. So the minimal connections between Fp and Fq define parallel
sections of their respective normal bundles. Exponentiating these sections
yields an affine subspace, which projects down to a line through p and q.
So in this case we can split off an euclidean factor R, i.e. π : Rn+k−1 ×R→
Mn−1 × R, π = (π′, id).

The existence of the affine leaf has the following immediate consequence
for the fibration.

Corollary 2.5 (Exact mean curvature form). Any metric fibration of Eu-
clidean space has exact mean curvature form.

Proof. Recall that κ(E) = trSEh , so for vertical U, V ,clearly ,

dκ(U, V ) = Uκ(V )− V κ(U)− κ([U, V ]) = 0.

Note that, by Theorem 1.32, κ is basic. For basic X we have [X,U ] is
vertical, so dκ(X,U) = Xκ(U)− Uκ(X)− κ([X,U ]). But the first and last
term are zero, because U and [X,U ] are vertical, also the second term is
zero, because κ is basic.

It remains to show that dκ(X,Y ) = 0 for basic X,Y . By Lemma 1.30
dκ(X,Y ) = −2 divAXY . This is the divergence induced by the metric on
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the corresponding fiber: Let e1, . . . , en+k be an orthonormal base of the
fiber, with e1, . . . , en horizontal, en+1, . . . , en+k vertical. Then divAXY =∑n+k

i=1 〈∇eiAXY, ei〉. If E1, . . . En are basic extensions of e1, . . . , en, then

〈∇EiAXY,Ei〉 = −〈AXY,∇EiEi〉 = 0.

Note that divAXY is constant along a fiber, for κ and therefore dκ are basic.
Let L be any fiber and c a minimal segment of length l from the totally

geodesic fiber F to L. Consider the holonomy diffeomorphism hc : F → L
arising from horizontal lifts of π ◦ c. Its differential hc∗u is given by J(l), J
being the holonomy field with initial conditions J(0) = u, J ′(0) = −A∗ċu −
Sċu. But F is totally geodesic, so the last term vanishes. With X being the
basic field with π∗ċ(0) = π∗X, the form of Jacobi fields in Euclidean space
yields that

‖hc∗u‖2 = ‖u‖2 + l2‖A∗Xu‖2.

So ‖hc∗‖2 is bounded from below by 1. But ‖AXY ‖2 is constant along fibers
for basic X,Y , so ‖A∗Xu‖2 is bounded from above, and so is ‖hc∗‖2.

Let Br ⊂ L be the image of the ball of radius r in F around some fixed
point under the diffeomorphism hc (see Figure 2). Then these bounds imply
that volBr ≥ ark for and vol ∂Br ≤ brk−1 for some constants a and b.

x

y

z

(1, 0, 0)

Br

Figure 2: A (here 1-dimensional) ball of small radius r in the totally geodesic
fiber gets mapped via holonomy diffeomorphism onto a ball Br in the fiber
L. The differential of the holonomy diffeomorphism yields bounds on its
volume.

Using Stokes’ Theorem and the fact that divAXY is constant along
fibers we have

a‖divAXY ‖rk ≤
∣∣∣∣∫
Br

divAXY

∣∣∣∣ =

∣∣∣∣∫
∂Br

〈AXY,Nr〉
∣∣∣∣ ≤ b‖AXY ‖rk−1,

where Nr denotes the unit normal to ∂Br. But this inequality must hold
for all r > 0, hence divAXY must be zero on L.
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2.2 Homogeneity in low codimension

In this section, our goal is to prove the following.

Theorem 2.6 (Gromoll-Walschap, 1997). Any k-dimensional metric fibra-
tion of Rn+k with k ≤ 3 is homogeneous. In particular, metric fibrations
are up to congruence in 1-1 correspondence with equivalence classes of rep-
resentations Rk → SO(n).

The proof is similar to the homogeneity result in [GG88] for fibrations of
spheres in the way that both approaches rely on basic linear algebra. The
proof consists roughly of three steps. First we follow [GW97] and establish
the main result Theorem 2.6: If the connection difference ω = −A∗ is basic,
or equivalently, that 〈AXY,U〉 is constant for parallel U and basic X,Y iff
ω is closed. In particular, ω induces a Lie algebra homomorphism and the
corresponding group homomorphism yields the generalized glide rotations.
So far we do not need the assumption that k ≤ 3.

Then we need the assumption k ≤ 3 to show that 〈AXY,AZW 〉 is con-
stant along the totally geodesic fiber F k for X,Y, Z,W basic. Here we follow
[GG88] and [GW97].

Finally, going back to [GW97] we use that 〈AXY,AZW 〉 is constant
along F k to obtain that ω is a Lie algebra homomorphism. Using this and
some classification results for Lie algebras, we obtain that ω is exact and
can apply Theorem 2.6.

As a first step, note the following general fact which relates the curvature
tensors of different connections on a vector bundle.

Lemma 2.7 (Curvature of different connections). Let E → M be a vector
bundle, ∇1,∇2 : VM × Γ(E) → Γ(E) be two connections. Then their
curvature tensors R1 and R2 are related via

R1(X,Y )σ −R2(X,Y )σ = d∇2ω(X,Y )σ + [ω(X), ω(Y )]σ,

where X,Y ∈ VM are vector fields on M , σ ∈ Γ(E) is a section, ω = ∇1−∇2

is the connection difference 1-form and d∇2ω is the exterior derivative of ω
associated to ∇2, defined by

d∇2ω(X,Y )σ = ∇2
X(ω(Y ))σ −∇2

Y (ω(X))σ − ω([X,Y ])σ.

Proof. Recall that a connection ∇ of E →M extends to 1-forms ω : VM →
End(Γ(E)) via

∇X(ω(Y ))σ = ∇X(ω(Y )σ)− ω(Y )∇Xσ.
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Using this we calculate:

d∇2ω(X,Y )σ = ∇2
X(ω(Y ))σ −∇2

Y (ω(X))σ − ω([X,Y ])σ

= ∇2
X(ω(Y )σ)− ω(Y )∇2

Xσ −∇2
Y (ω(X)σ) + ω(X)∇2

Y σ

− ω([X,Y ])σ

= ∇2
X∇1

Y σ −∇2
X∇2

Y σ − ω(Y )∇2
Xσ

−∇2
Y∇1

Xσ +∇2
Y∇2

Xσ + ω(X)∇2
Y σ − ω([X,Y ])σ

Now calculate the commutator of ω(X) and ω(Y ).

[ω(X), ω(Y )]σ = ω(X)ω(Y )σ − ω(Y )ω(X)σ

= ω(X)∇1
Y σ − ω(X)∇2

Y σ − ω(Y )∇1
Xσ + ω(Y )∇2

Xσ

= −ω(X)∇2
Y σ + ω(Y )∇2

Xσ

+∇1
X∇1

Y σ −∇2
X∇1

Y σ −∇1
Y∇1

Xσ +∇1
Y∇1

Xσ

Adding these two equations yields the desired result, because all terms in-
volving ω, except ω([X,Y ])σ cancel each other out, as do the mixed terms
∇2
·∇1
· .

Lemma 2.8. In our situation with ∇ being the covariant derivative of Rn,
∇B being the Bott connection and ω the connection difference form, we have

d∇ω = −d∇Bω = −[ω, ω].

Proof. Let RB the curvature tensor of the Bott connection and let Rh be the
curvature tensor of Rn, restricted to VM×VM×ΓH (i.e. the domain of RB).
Then, by the preceding lemma, they satisfy Rh = RB + d∇Bω + [ω, ω]. But
both connections are flat, so d∇Bω = −[ω, ω]. Reversing the roles of Rh and
RB and using −ω = ∇2−∇1, we obtain the other half of the statement.

This allows us to state Gromoll and Walschap’s main theorem:

Theorem 2.9 (Main theorem, Gromoll-Walschap, 1997). Let π : Rn+k →
Mn be a metric fibration, F the totally geodesic fiber over the soul of M
and ω the connection difference form along F . Then ω is closed iff it is
Bott-parallel. If this is the case, then

(i) ω induces a Lie algebra homomorphism ω : Rk → so(n);

(ii) π is the orbit fibration of the free isometric group action ψ of Rk on
Rn+k = Rk × Rn given by

ϕ(v)(u, x) = (u+ v, ϕ(v)x), u, v ∈ Rk, x ∈ Rn,

where ϕ : Rk → SO(n) is the representation of Rk induced by ω.
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Proof. (i): Clearly, if ω is Bott-parallel, then it is also Bott-closed (i.e.
closed w.r.t. d∇B ) and by Lemma 2.8 it is also closed. On the other hand,
if X,Y are basic fields along F , and U is vertical, we have ∇vU (AXY ) =
∇vU∇vXY = ∇vU∇XY , since F is totally geodesic and ∇vUH = −SHU = 0
along F for any horizontal H. Since Euclidean space is flat, we get that
∇vU∇XY = ∇vX∇UY + ∇v[U,X]Y . By the same reasoning the last term is
zero, so

∇vU (AXY ) = ∇vX∇UY = ∇vX(∇vUY +∇hUY )

= ∇vX(−SY U +∇hY U + [U, Y ]h) = ∇vX(−SY U −A∗Y U)

= ∇vX(−SY U)−AXA∗Y U.

Using this we have that

〈∇vU (AXY ), V 〉 = 〈∇vX(−SY U), V 〉 − 〈AXA∗Y U, V 〉
= −X〈SY U, V 〉+ 〈SY U,∇vXV 〉 − 〈A∗Y U,A∗XV 〉
= −X〈SY U, V 〉 − 〈ω(U)Y, ω(V )X〉.

Let α = (AXY )[. Then for any U, V vertical and parallel along F

dα(U, V ) = ∇Uα(V )−∇V α(U)

= 〈∇vUAXY, V 〉 − 〈∇vVAXY,U〉
= −X〈SY U, V 〉 − 〈ω(U)Y, ω(V )X〉
+X〈SY V,U〉+ 〈ω(V )Y, ω(U)X〉
= 〈ω(V )Y, ω(U)X〉 − 〈ω(U)Y, ω(V )X〉,

since SY is self-adjoint. Observe that in general

〈[ω(U), ω(V )]X,Y 〉 = 〈ω(U)ω(V )X,Y 〉 − 〈ω(V )ω(U)X,Y 〉,

and

〈ω(U)ω(V )X,Y 〉 = −〈A∗ω(V )XU, Y 〉 = −〈U,Aω(V )XY 〉

= 〈U,AY ω(V )X〉 = −〈ω(U)Y, ω(V )X〉.

Using Lemma 2.8 we finally obtain

dα(U, V ) = 〈ω(U)ω(V )X,Y 〉 − 〈ω(V )ω(U)X,Y 〉 = 〈[ω(U), ω(V )]X,Y 〉
= −〈d∇ω(U, V )X,Y 〉.

So if ω is closed, then so is α. But this means α = df for some function
f , i.e. df(U) = α(U) = 〈α,U〉 = 〈AXY, U〉, so AXY is a gradient. We
know, for any parallel vector field E along a integral curve c of AXY , that
〈∇∂t ċ, E〉 = ∂

∂t〈∇f,E〉 = dα(E)( ∂∂t) = 0, so c must be a geodesic and in
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particular AXY is parallel. As observed before, this is equivalent to ω being
Bott-parallel.

(ii): Identify Rk via parallel translation with its tangent space and view
sections of νF as maps Rk → Rn. The evaluation of ω at 0 ∈ Rk then defines
a linear map ω : Rk → so(n). By Lemma 2.8, ω is a Lie-algebra homomor-
phism. Let ϕ : Rk → SO(n) be the corresponding group homomorphism.
Let X be definied by Xu = ϕ(u)x, for x ∈ Rn. Then X is the basic field
with X0 = x:

(∇wX)v =
d

dt

∣∣∣∣
t=0

ϕ(v + tw)x =
d

dt

∣∣∣∣
t=0

ϕ(tw)ϕ(v)x = ω(w)Xv.

In particular, the fiber F(u,x) of π through a point (u, x) can be described

as the set of all (u + v,Xu+v), as v ranges over Rk. But this is exactly the
free action in the statement:

ψ(v)(u, x) = (u+ v, ϕ(v)x) = (u+ v, ϕ(u+ v)ϕ(−u)x = (u+ v,Xu+v),

where the last equality follows from the fact that in this case X0 = ϕ(−u)x.

This concludes the first step. We now restrict our attention to basic
vector fields and the vector space A spanned by all fields AXY along the
totally geodesic fiber F . Note that by skew-symmetry of the A-tensor, its
dimension is at most n(n− 1)/2. We define the rank of the fibration to be
the maximum of dimAp = dim {Up | U ∈ A}. In particular the rank of the
fibration is always ≤ k.

The following lemma shows that A∗XAX preserves basic fields for basic
X. Then we will use some linear algebra and the fact that k ≤ 3 to establish
that this is also true for A∗XAY .

Lemma 2.10. Along leaves, 〈AXY,AXZ〉 is constant for basic X,Y, Z.

Proof. From [O’N66, Theorem2] we know that for a Riemannian submersion
π : M → B the curvature tensor R of M and the horizontal lift R∗ of the
curvature tensor on B are related via the A-tensor in the following way:

〈R(X,Y )Z,H〉 − 〈R∗(X,Y )Z,H〉
=〈AY Z,AXH〉+ 〈AZX,AYH〉 − 2〈AXY,AZH〉
=〈AY Z,AXH〉 − 〈AXZ,AYH〉 − 2〈AXY,AZH〉,

where X,Y, Z,H are horizontal fields on M and we have used the skew-
symmetry of the A-tensor. In particular we obtain

Rh(X,Y )Z −R∗(X,Y )Z = A∗XAY Z −A∗YAXZ − 2A∗ZAXY.
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But if M is a space of constant curvature c, as in our case c = 0, R(X,Y )Z =
c(〈Y,Z〉X − 〈X,Z〉Y ) and therefore is basic. Hence the right hand side of
the equation is also basic. Letting Z = X and using the skew-symmetry
of A, the right hand side becomes −3A∗XAXY . Thus A∗XAXY is basic, or
equivalently 〈AXY,AXZ〉 is constant along leaves.

Corollary 2.11. It follows that A∗XAY +A∗YAX also preserves basic fields.

Proof. Straightforward application of the polarization formula for quadratic
forms yields for basic X,Y, Z:

A∗X+YAX+Y Z −A∗XAXZ −A∗YAY Z
=A∗X+YAXZ +A∗X+YAY Z −A∗XAXZ −A∗YAY Z
=A∗XAXZ +A∗YAXZ +A∗XAY Z +A∗YAY Z −A∗XAXZ −A∗YAY Z
=A∗XAY Z +A∗YAXZ

The left hand side is basic by the previous lemma. Hence the right hand
side is also basic.

Lemma 2.12. For X,Y, Z,W being basic vector fields, 〈AXY,AZW 〉 is con-
stant along F k.

Proof. First we deal with the substantial case. Clearly we do not need to
consider the case k = 1. Note that ifX,Y, Z,W are not linearly independent,
we can use the skew-symmetry of the A-tensor and immediately obtain the
result using Lemma 2.10. In particular, we may assume n ≥ 4.

Consider a subspace H of basic fields along F k such that dimH = m+
1 ≤ 4 and for someX0 ∈ H the vertical space is spanned by {AX0Y | Y ∈ H}
at some point in the fiber. By Lemma 2.10 the vertical distribution is
spanned by {AX0Y | Y ∈ H} along all of F k. The case m = 2 can only
occur if k = 2 and for n ≥ 4 we may assume m = 3 by enlarging H if
necessary. So we only have to deal with this case if k = 2 and n = 2.

Now the claim holds for all X,Y, Z,W ∈ H: Let X0 be as above and
choose Xl ∈ H for 1 ≤ l ≤ k such that

(i) the Xl are independent for 0 ≤ l ≤ m, and

(ii) the AX0Xl are orthonormal for 1 ≤ l ≤ k.

We only have to show that 〈AXiXj , AX0Xl〉 is constant for 0 ≤ i < j ≤
m, 1 ≤ l ≤ k, since we can use the skew-symmetry of A to obtain the other
cases. But for i = 0, i = l or j = l we already know by Lemma 2.10 that this
is true. For the other cases we use that ‖AXiXj‖ is constant along fibers.
Observe that, by (ii), we have

‖AXiXj‖2 =

k∑
l=1

〈AXiXj , AX0Xl〉2.
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Now we use k ≤ 3; careful observation of the indices and using the skew-
symmetry of A shows that the right hand side consists only of constant
terms by Lemma 2.10, except for 〈AXiXj , AX0Xl〉.

If for any basic X,Y, Z,W , after possibly reordering, we have AWX,
AWY and AWZ span the vertical distribution, set H = span {X,Y, Z,W}.
However if this does not hold, we use the assumption that the fibration
is substantial and extend X,Y, Z,W to a spanning set of such an H of
dimension m+ 1. This concludes the substantial case.

Now assume that rankAW < k. Then dim kerAw > n − r ≥ n − 3. If
X,Y, Z are linearly dependent, say Z = aX+bY we have by skew-symmetry
of A

〈AXY,AZW 〉 = 〈AXY,AaX+bYW 〉 = a〈AXY,AXW 〉+ b〈AXY,AYW 〉,

but this is constant as A∗XAX preserves basic fields. So let X,Y, Z be linearly
independent. Then kerAW ∩ span {X,Y, Z} 6= ∅. Let therefore aX + bY +
cZ ∈ kerAW , with say, a 6= 0. Then

a〈AWX,AY Z〉+ b〈AWY,AY Z〉+ c〈AWZ,AY Z〉 = 0,

where the last two summands are constant, because they only involve three
basic vectors each. Hence

〈AWX,AY Z〉 = 〈AXW,AZY 〉 = 〈A∗ZAXW,Y 〉

is constant, i.e. A∗ZAXW is basic. We know that A∗ZAX +A∗XAZ preserves
basic fields, so 〈A∗ZAXW + A∗XAZW,Y 〉 is constant, too. But then also
〈A∗XAZW,Y 〉 = 〈AZW,AXY 〉 must be constant.

Corollary 2.13. For F weakly substantial, homogeneity follows.

Proof. We have to show that 〈AXY,U〉 constant for parallel U . But U ∈ A
by assumption, so U = AZW for basic Z,W and 〈AXY,AZW 〉 is constant
and we may apply Theorem 2.9.

Now the dimension of A coincides with the rank of the foliation and
〈AXY,AZW 〉 is constant along F for basic X,Y, Z,W . In other words
〈A∗XAZW,Y 〉 = −〈ω(AZW )X,Y 〉, i.e. ω(V ) preserves basic fields for V ∈ A.
This allows us to show that A is a Lie algebra.

Lemma 2.14 (A is a Lie algebra). (A, {·, ·}) is a Lie algebra isomorphic to
a subalgebra of so(n), where {U, V } is the orthogonal projection of [U, V ]
onto A.

Proof. As observed, ω(V ) preserves basic fields for V ∈ A. Let X,Y be basic
extensions of x and y and set 〈−ω(V )x, y〉 = −〈ω(V )X,Y 〉. We obtain a
linear isomorphism between A and ω(A) ⊂ so(n). It is clearly onto, and to
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see that it is injective, let V ∈ kerω. Then for all x, y and corresponding
basic extensions X,Y

0 = 〈ω(V )x, y〉 = 〈−A∗XV, Y 〉 = −〈V,AXY 〉.

But AXY ∈ A by definition of A, so V must be the zero vector field. Now
consider the lie bracket [·, ·] of so(n). Then for basic X and U, V ∈ A

[ω(U), ω(V )]X = ω(U)ω(V )X − ω(V )ω(U)X = ∇h∇h
XV

U −∇h∇h
XU
V.

Since ω(V ) preserves basic fields, [U,∇hXV ] is vertical and it follows that

[ω(U), ω(V )]X = ∇hU∇hXV −∇h∇h
XU
V = ∇hUω(V )X − ω(V )(∇hXU)

Note that because F k is totally geodesic any field of the form ∇UX with U
vertical and X horizontal is horizontal along F k:

∇UX = ∇hUX +∇vUX = ∇hUX − SXU = ∇hUX

Now we see that

∇U (ω(V ))X = ∇Uω(V )X − ω(V )(∇UX)

= ∇hUω(V )X − ω(V )(∇UX) = [ω(U), ω(V )]X.

We know from Lemma 2.8 that the exterior derivative of ω w.r.t. ∇ is dω =
−[ω, ω]. But also:

dω(U, V ) = ∇Uω(V )−∇V ω(U)− ω([U, V ])

= [ω(V ), ω(U)]− [ω(U), ω(V )]− ω([U, V ])

= −2[ω(U), ω(V )]− ω([U, V ]),

and consequently

−[ω, ω](U, V ) = −2[ω, ω](U, V )− ω([U, V ]).

⇔ [ω(U), ω(V )] = −ω([U, V ]).

Hence ω is actually an isomorphism of Lie algebras and we can define a
bracket on A via

U, V := (−ω)−1([ω(U), ω(V )]) = ω−1(ω([U, V ]) = [U, V ]− [U, V ]kerω,

where ·kerω denotes the projection on the kernel of ω. Notice that U ∈ kerω,
iff ω(U)X = −A∗XU = 0 for all horizontal X. But this means that for any
horizontal Y 〈A∗XU, Y 〉 = 〈AXY, U〉 = 0, so kerω = A⊥ and the claim
follows.
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Recall that for the application of Theorem 2.9 we need that ω is exact,
or equivalently that [ω, ω] = 0. For this we need a better understanding of
the Lie bracket {·, ·} of A. It will follow from the following two lemmata,
that {·, ·} is just the Lie bracket of A, i.e. of Rr, where r is the rank of the
fibration.

Lemma 2.15 (A⊥ defines a metric foliation). The distribution kerω = A⊥
generates a Riemannian foliation F on F .

Proof. Let T1, T2 ∈ kerω. By Lemma 2.14, ω([T1, T2]) = [ω(T1), ω(T2)] = 0.
Hence kerω is integrable by Frobenius’ Theorem and generates a foliation
F . Note that by the same argument for T ∈ kerω we have ω([T,AXY ]) =
−dω(T,AXY ) = [ω(T ), ω(AXY )] = 0. In particular, we have for X,Y, Z,W
basic

〈[T,AXY ], AZW 〉 = 〈A∗Z [T,AXY ],W 〉 = −〈ω([T,AXY ]),W 〉 = 0 (∗)

To see that the foliation is Riemannian, we show that the corresponding
Bott connection [T,X]A is metric, where X is horizontal and ·A denotes the
projection onto A. For this calculation, we employ the Einstein summation
convention. Let Xi, Yi be basic fields such that Ai := AXiYi is an orthonor-
mal basis of A and let X = ϕiAi, Y = ψiAi be horizontal vectorfields (w.r.t.
F). By (∗), we now have 〈[T, ϕiAi], Aj〉 = 〈T (ϕi)Ai + ϕi[T,Ai], Aj〉 =
〈T (ϕi)Ai, Aj〉.

T 〈X,Y 〉 = T 〈ϕiAi, ψiAi〉 = 〈∇TϕiAi, ψiAi〉+ 〈ϕiAi,∇TψiAi〉
= ψj〈∇TϕiAi, Aj〉+ ϕj〈Aj ,∇TψiAi〉
= ψj〈T (ϕi)Ai + ϕi∇TAi, Aj〉+ ϕj〈Aj , T (ψi)Ai + ψi∇TAi〉
= ψj〈T (ϕi)Ai, Aj〉+ ϕj〈Aj , T (ψi)Ai〉
+ ϕjϕi〈∇TAi, Aj〉+ ϕjψi〈Aj ,∇TAi〉

(∗) = ψj〈[T, ϕiAi], Aj〉+ ϕj〈Aj , [T, ψiAi]〉+ ϕiψjT 〈Ai, Aj〉
= 〈[T, ϕiAi], ψiAi〉+ 〈ϕiAi, [T, ψiAi]〉
= 〈[T,X]A, Y 〉+ 〈X, [T, Y ]A〉.

Lemma 2.16 (The bracket of A). The bracket {·, ·} of A coincides with the
ordinary Lie bracket [·, ·].

Proof. Note that, it holds that 〈∇UV,W 〉 for U, V,W ∈ A is constant, be-
cause for basic X,Y 〈∇UV,AXY 〉 = 〈A∗X∇AUV, Y 〉 = −〈ω(∇AUV )X,Y 〉 ,
while ω(U) preserves basic fields for U ∈ A.
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We now examine F as defined in Lemma 2.15. If κ denotes the mean
curvature form of F , we have for an orthonormal base Ui of A and an
orthonormal base Vi of A⊥,

κ(AXY ) = −
∑
i

〈Vi,∇ViAXY 〉

= −divAXY +
∑
i

〈Ui,∇UiAXY 〉 =
∑
i

〈Ui,∇UiAXY 〉,

where div is the divergence of the fiber F and hence divAXY = 0. It
follows that κ is constant on each element of a basic spanning set for A and
consequently dκ = 0. Hence κ = df for some function f and κ] = ∇f is a
gradient.

Let c be an integral curve of∇f ; c is necessarily a geodesic (as seen in the
proof of Theorem 2.9). Then κ(ċ) = κ(∇f) = 〈κ],∇f〉 = 〈κ], κ]〉 = ‖κ‖2.
But κ(ċ) = 〈ċ, ċ〉 = ‖ċ‖2, so ‖κ‖2 is constant.

We have seen in the proof of Lemma 1.34 that ‖SċU‖2 goes to zero, so
we actually have κ ≡ 0, and hence the foliation is by minimal leaves.

Hence Lemma 1.34 applies, thus for X,Y ∈ A, X,Y = [X,Y ]A =

[X,Y ]− [X,Y ]A
⊥

= [X,Y ]− 2AXY = [X,Y ].

Proof of Theorem 2.6. Now everything comes together. By Lemma 2.14 we
have (A, [·, ·]A) is a Lie algebra, where ·A denotes the orthogonal projection
onto A. Now Lemma 2.15 tells us, that A⊥ = kerω generates a Riemannian
foliation F of the fiber F k where the AXY are basic fields. As noted above,
this foliation is minimal, because ‖Sċ(t)‖ → 0 for t → ∞, as seen in the

proof of Lemma 1.34. But this means that it is also flat, i.e. [U, V ]A
⊥

= 0
for U, V ∈ A. Hence (A, [·, ·]A) = (A, [·, ·]) is isomorphic to a Lie subalgebra
of so(n).

Let ei denote an orthonormal basis of −ω(A). By calculating the struc-
ture constants cijk = 〈[ei, ej ], ek〉so(n), we find that el = −ω(fl) for some
fl ∈ A. But −ω is an isomorphism of Lie algebras and preserves brackets,
and because the bracket of A is zero, it follows that [ei, ej ] must also be zero.
Hence the structure constants cijk are also zero. By [Mil76, Lemma 1.1], the
curvature of −ω(A) may be expressed in terms of these structure constants
and is consequently flat. Then, by [Mil76, Theorem 1.5], −ω(A) now splits
as an orthogonal direct sum of a commutative subalgebra and a commu-
tative ideal. But with so(n) being semisimple, the latter has to be zero,
hence −ω(A) is Abelian. In particular dω = [ω, ω] = 0 and Theorem 2.9
applies.
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3 A theorem on existence of local foliations

We have seen that whenever we have a foliation, its normal bundle is flat
w.r.t. the Bott connection. If X is a basic field along a leaf L and c a curve
in L, Y the parallel transport of ċ(0) along an integral curve of X emanating
from c(0), then ∇hċ(0)X = ∇hYX = ∇hXY + [Y,X]h = 0, so ∇ċX is tangential
to L. This in turn is just the canoncial connection on the normal bundle of
a submanifold, where a normal field is parallel if its covariant derivative in
directions of the submanifold is tangential.

The following theorem shows that the converse of this observation holds
in Euclidean space.

Theorem 3.1. Let (Nn−k, g) ⊂ (Rn, 〈 , 〉) be a Riemannian submanifold
with flat normal bundle. Then N locally defines a Riemannian foliation
of Rn. Furthermore the basic vector fields are exactly those parallel and
normal to N .

Proof. Since νN is flat, there are locally parallel sections of the normal
bundle. Let p ∈ N , U ⊂ Rn be an open neighbourhood of p small enough,
such that ν(U ∩N) admits parallel sections and for a parallel section X that
expX(N) ∩ U yields a diffeomorphic copy of N ∩ U . Clearly this defines
a foliation, with vertical vectors being those tangent to copies of N ∩ U .
Let X be a parallel section, let Ns := exp sX(N) ∩ U for all s where the
intersection is not empty. Let qs = expm sX for some m ∈ N . We then may
identify the tangent spaces TmN and TqsNs via parallel translation along
the geodesic s 7→ expm sX.

Now we wish to see that if e ∈ TmRn is orthogonal to N , then the
parallel transport E of e along s 7→ expm sX is again orthogonal to Ns.
Let v ∈ TqsNs, γ be a curve with γ(0) = qs, γ̇(0) = v. Note that γ(t) =
expc(t) sX for some curve c in N with c(0) = m. Then expc(t) sX(c(t)) is a
variation through geodesics, with variational field J , the Jacobi field with
initial conditions J(0) = ċ(0) and

J ′(0) =
∇
∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0

expc(t) sX(c(t))

=
∇
∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

expc(t) sX(c(t)) =
∇
∂t

∣∣∣∣
t=0

X(c(t)) = 0,

because X is parallel. Furthermore, we know in Euclidean space, J ′′ = 0.
It follows that J is the parallel transport of ċ(0) along s 7→ expm sX, so
J(1) = v. By assumption 〈J(0), E(0)〉 = 〈ċ(0), e〉 = 0. Furthermore,

〈J,E〉′ = 〈J ′, E〉+ 〈J,E′〉 = 0,

since both fields are parallel. Consequently,

〈J,E〉′′ = 2〈J ′, E′〉+ 〈J ′′, E〉+ 〈J,E′′〉 = 0.
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Hence 〈J,E〉 ≡ 0.
Now we can show that this foliation is Riemannian: Let U be vertical,

X,Y be horizontal, p = expZ(m) ∈ NZ with NZ = exp(Z(N)) ∩ U for
some parallel section Z. Then U(p) = ċ(0) for some curve in NZ . Let
ei be an orthonormal base of the horizontal space at m, and extend it via
parallel transport in Euclidean space to an parallel orthonormal frame Ei.
In particular, we have ∇EiEj = 0. As observed above, then the Ei(p) are
still horizontal. Using the Einstein summation convention, write X = ϕiEi
and Y = ψiEi. Then

U〈X,Y 〉 = 〈∇UX,Y 〉+〈X,∇UY 〉 = 〈∇XU+[U,X], Y 〉+〈X,∇Y U+[U, Y ]〉.

By Lemma 1.37, we are done if we can show that ∇hXU = 0. First observe
that

〈∇XU, Y 〉 = X〈U, Y 〉 − 〈U,∇XY 〉 = −〈U,∇XY 〉.

But we have

∇XY = ∇ϕEiψ
jEj = ϕi∇Eiψ

jEj

= ϕiψj∇EiEj + ϕiEi(ψ
j)Ej ,

and by construction of the Ei, the first summand vanishes. This means that
∇XY is horizontal, hence 〈∇XU, Y 〉 = −〈U,∇XY 〉 = 0, establishing the
claim.
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4 A small survey on generalizations

We conclude this thesis by surveying on some of the possible generalizations
of the main theorem Theorem 2.6.

4.1 Homogeneity in arbitrary codimension

Probably the most obvious generalization is to check whether the result
holds for a Riemannian submersion π : Rn+k → Mn with k > 3. Gromoll
and Walschap published a proof in [GW01], however, according to [FGLT00]
Stefan Weil found an error in it, which in turn was communicated to the
author by Marco Radeschi. However, the proof still works whenever the
fibration is substantial. We will give a short outline of the strategy of the
proof.

As in the case for k ≤ 3, one obtains a totally geodesic fiber F k over the
soul of Mn. Again, the goal is to apply Theorem 2.9, i.e. to check that the
connection difference form ω = −A∗ is basic. However, the arguments of
Lemma 2.12 clearly do not generalize appropriately, since we relied heavily
on the fact that k ≤ 3. In the general case, one considers, an parallel or-
thonormal base E1, . . . , Ek of the vertical distribution along the fiber F k and
extends it via holonomy diffeomorphism radially to vector fields U1, . . . , Uk
on all of Rn+k. In particular, along horizontal geodesics c, Ui ◦ c is just the
holonomy field with initial conditions J(0) = Ei, J

′(0) = −AċEi, since F k

is totally geodesic.
Recalling that the mean curvature form is basic and exact, let f be the

function with df = κ and f |Fk ≡ 1, and be τ the vertical volume form
restricted to vertical fields. Then define the holonomy form η := e−fτ .
Now consider the k-blades U1 ∧ · · · ∧ Uk. It turns out that these are dual
to the holonomy form. This allows one to establish that they are holonomy
invariant in the sense that the wedge is independent of the chosen horizontal
path.

Using the usual identifications of Rn+k with its tangent space, one treats
η] = U1 ∧ · · · ∧ Uk as a map Rn+k →

∧
k Rn+k. Since the Ui are holonomy

fields, they are linear along horizontal geodesics emanating from the totally
geodesic fiber. This in turn implies that η] is polynomial of degree at most k
along horizontal subspaces Rn×{v}, v ∈ F k in the sense that the component
functions ϕi : Rn+k → R are polynomial of degree at most k. Now the
holonomy invariance allows one to show that η] is indeed polynomial along
any affine horizontal subspace.

The form of holonomy fields in Euclidean space shows that the vertical
space at infinity is spanned by (ker + im)A∗, and equivalently, the horizontal
space at infinity is spanned by (ker + im)A. A continuity argument yields
that η] is polynomial along any affine plane through a point (0, v) ∈ F k

spanned by a horizontal vector x and a vertical u ∈ imAx. Now, ∇xη]
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restricted to a line γu(t) := (0, v + tu) is given by

∇xη] = −
∑
i

E1 ∧ · · · ∧A∗xEi ∧ · · · ∧ Ek.

The Ej are parallel and because ‖AXY ‖ is constant along fibers, A∗xEi is
bounded in norm as well. The derivative of a polynomial map is also poly-
nomial and a bounded polynomial must be constant. It follows that each
A∗xEi is parallel along γu, or equivalently, that (Axy◦γu)′ ≡ 0 for u ∈ imAx,
x, y parallel sections of νF k. Hence, AXY is parallel along F in directions
u ∈ imAx, so Theorem 2.9 applies in the case of a substantial foliation.

For the non-substantial case Gromoll and Walschap gave a variational
argument, however, the initial conditions are a priori only fulfilled at 0 ∈ Fk,
but are needed along the whole fiber, so one is not allowed to split off A⊥
in a way similar to Lemma 2.15.

4.2 Another approach to show homogeneity

The proofs of Gromoll and Walschap first established that ω is basic and
defines a Lie algebra homomorphism. The corresponding Lie group homo-
morphism ϕ : Rk → SO(n) yields that the leaves of the foliation are given
by {

(v, ϕ(v)x | x ∈ Rn, v ∈ Rk
}
.

Wilking suggested that one could try to reverse this approach. Since the soul
construction yields a totally geodesic fiber, one can obtain a map ϕ : Rk →
SO(n) in another fashion: Let Ei = (v, xi) denote the basic field which
projects to the same vector field as (0, ei) ∈ T0Rn+k for an orthonormal
basis of {0} × Rn. Then let ϕ be defined via ϕ(v)ei = xi. Now the leaves
are again of the form given above, but one does not know yet that ϕ is a
homomorphism of Lie groups. One might be able to exploit the fact that
the leaves are equidistant.

As we learned that the approach of Gromoll and Walschap does not
work in all cases, Wilking also suggested that one might be able to rule out
a class of counterexamples, namely those equidistant fibrations arising from
arbitrary group actions, and not only Abelian ones, by showing that these
must be at least orbit equivalent to an equidistant fibration arising from an
Abelian Lie group action. In this case, the existence of the totally geodesic
fiber yields a similar map, again.

4.3 Foliations

So far we have only dealt with the case where we have a Riemannian sub-
mersion π : Rn+k → Mn. But what is the situation if we are only given
a k-dimensional foliation F of Rn+k? Gromoll and Walschap showed in

36



[GW97] that for k ≤ 2, F actually is a fibration, hence the classification
result applies.

In fact, Florit, Goertsches, Lytchak and Töben showed in [FGLT00] that
any foliation of Euclidean space is actually given by a fibration and so they
reduced the classifications of foliations to the one of fibrations. In particular,
using the results presented in this thesis, one can show that foliations of codi-
mension k ≤ 3 are homogeneous, as are substantial foliations in arbitrary
codimension.

4.4 Singular equidistant foliations

When talking about foliations, we always assume that the leaves share the
same dimension. While this restriction seems reasonable, dropping it yields
many more interesting examples, like the Euclidean plane foliated by concen-
tric circles of different radii, with the circle of radius 0 being a singular leaf of
dimension 0. Boltner studied these in [Bol07], while keeping the assumption
that the leaves are equidistant. In this case the map π : Rn+k → Rn+k/F is
not a Riemannian submersion, but Rn+k/F has the structure of an Alexan-
drov space and π is a submetry. Boltner has adapted the soul construction
to this setting (his approach also works in the case of a Riemannian sub-
mersion), and shows how one can obtain new inhomogeneous examples from
existing ones, as these foliations do not necessarily need to be homogeneous.

4.5 Curvature

One of the main topics in differential geometry is that of curvature, and one
is interested in the behaviour of structures in different curvature settings.
So a question that naturally arises is whether one can obtain homogeneity
in non-flat spaces. Indeed, the groundwork for the study of Riemannian
foliation was laid down by Gromoll and Grove in [GG85], where the authors
study one dimensional foliations in spaces of constant curvature K. They
obtain that for K ≥ 0, a foliation must be either homogeneous or flat, and
since the latter can only occur for K = 0, foliations of spheres are always
congruent to Hopf fibrations S2n+1 → CPn. For K < 0 no such result holds,
even in the one-dimensional case: One can consider the foliation generated
by exponentiating parallel sections of the normal bundle of a line without
focal points, hence this foliation is global. By a version of Theorem 3.1 this
foliation is metric, and in negative curvature one can disturb the line quite
arbitrarily, without introducing focal points.

Later, in [GG88], Gromoll and Grove extend the result for space forms of
positive curvature to foliations of codimension k ≤ 3. There are topological
restrictions on what fibrations a sphere can admit: Any fibration of a homo-
topy sphere Sn must have fibers S1, S3 or S7, but the latter can only occur
in the case n = 15. So except for this case, they classified the fibrations of
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spheres, which are always given by Hopf fibrations. As already mentioned,
their proof also relies heavily on linear algebra and the assumption that
k ≤ 3.

Only recently the remaining case was classified by Lytchak and Wilking
in [LW13]. Their approach is quite different, employs a lot of topological
machinery and finally yields the following classification result:

Theorem 4.1 (Lytchak-Wilking, 2013). Let F be a Riemannian foliation
on a round sphere Sn with leaf dimension 0 < k < n. Then, up to isometric
congruence, either F is given by the orbits of an isometric action of R or
S3 with discrete isotropy groups or it is the Hopf fibration of S15 → S8(1/2)
with fiber S7.
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